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STEREOSELECTIVE OXIDATION OF AN ELEVEN-MEMBERED HETEROCYCLE
Paul B. Savage, John M. Desper and Samuel H. Galiman®

S. M. McElvain Laboratory of Organic Chemistry, Department of Chemistry,
University of Wisconsin, 1101 University Ave., Madison, Wi 53706

Abstract: Oxidation of macrocyclic phosphine oxide-dithioether 1 produces only the dl form
of disulfoxide 2. This selectivity can be rationalized by comparing the crystal structures of starting
material and product, and on the basis of VT NMR data, which suggest that the starting macrocycle
is conformationally constrained in solution.

Molecules containing multiple sulfoxide and/or phosphine oxide groups are of interest as
potential hosts for cations and for neutral guests bearing multiple hydrogen bond donors.! As part
of our exploration of such systems, we have prepared macrocycle 1 and oxidized it 1o disultoxide
2. Wae report here that this oxidation is selective, providing only the dl product; neither of the meso
stereoisomers was detected. Structural data for starting material and product suggest that this
seiectivity results from the conformational preference of eleven-membered ring of 1.

Phosphine oxide-dithioether 1 was prepared in 74% yield by allowing the corresponding
dithiol2 to react with 1,4-dibromobutane and K;CO3 in CH3CN at room temperature. Careful
oxidation with H,O, in AcOH/CH,Cl, at room tempterature or with m-chloroperbenzoic acid in
CH,Cl, at -780C produced only dI-2. In contrast, oxidation of acyclic phosphine oxide-dithiosther
3 with H,O, in AcOH/CH,Cl, produced a mixture of the four possible stereoisomeric forms of
phosphine oxide-disulfoxide 4. The dl-pair and the two meso forms of 4 were readily resolved into
three peaks by normal phase (1% CH3;OH in CH,Cl) and reverse phase (Cqg; 3:7 THF/H,0)
HPLC. The di-pair could be preparatively separated {from the two meso isomers of 4 by tlash
chromatography3 on silica eluting with 3% CH3;0H in CHCI;. Chromatographic analysis indicated
that these stereoisomers were produced in similar quantities durin:* the H,O, oxidation of 3

(1.6:1:1 dl-pair/meso/meso). ;
° j:o .
Ph Ph Ph Ph
1 di-2 3 4
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Figure 1 shows the crystal structures of 1, di-2 and di-4. A comparison of the structures of 1
and di-2 suggests a rationale for the observed oxidation selectivity. In the unsymmetrical
conformation adopted by 1, each sulfur atom is oriented so that one lone pair of electrons is
pointed into the center of the macrocyclic ring and thereby blocked from oxidation. For the pro-R
sulfur atom of the structure shown for 1, the available lone pair is cis to the phosphine oxide
oxygen atom, but for the pro-S sulfur atom, the available lone pair is trans to the phosphine oxide
oxygen. Oxidant approach to the most accessible lone pair on each sulfur atom in the
crystallographically observed conformation would generate the stereoisomeric form of 2 shown in
Figure 1.4

(c)

Figure 1. (a) Ball-and-stick representations of (a) 1, (b) di-2 and (c) dI-4 in the
crystalline state; the hydrogen atoms have been omitted for clarity. Although not
indicated here, the monosubstituted pheny! ring of dI-2 was disordered. This disorder
could be accounted for as an approximately 1:1 mixture of two slightly different phenyl
positions, only one of which is shown.
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The hypothesis that oxidation selectivity results from steric constraints on oxidant approach
requires that the eleven-membered ring of the starting material have well-defined conformational
preferences under the reaction conditions.S Variable-temperature proton-decoupled 13C NMR
data suggest that the mability of this macrocycle is indeed restricted. At -500C in CDClj, the four
carbons of the tetramethylene segment of 1 give rise to signals at 37.53, 34.37, 24.64 and 24.23
ppm. Coalescence among these resonances occurs as the temperature is raised: at +50°C, only
two signals are observed in this spectral region, at 36.36 and 25.18 ppm. Since the four CH,
signals observed at low temperature are all of similar intensity, these VT-NMR data are consistent
with the existence of a single unsymmetrical conformation that interconverts with its enantiomer
rapidly on the NMR time scale only at the higher temperatures. Alternatively, these observations
could result from the existence of two distinct symmetrical conformers that are in slow exchange
and present in equivalent amounts at low temperature. This latter possibility is rendered unlikely
(but not ruled out) by the behavior of the aromatic 13C resonances. The four resonances arising
from the carbons of the monosubstituted (exo-cyclic) phenyl ring and the lone resonance arising
from the carbons para to phosphorus on the disubstituted phenyl rings remain sharp from -50° to
+500C, while the rest of the aromatic signals undergo coalescence over this range. If there were
indeed two non-enantiomeric conformations in slow exchange at -509C, then all of the non-
coalescing carbons would have to be accidentally equivalent in these two structures.

The crystal structures of di-2 and dl-4 suggest that an interesting set of non-bonded
interactions is important in determining the observed conformations. In both molecules, each of the
sulfoxide oxygens is nearly eclipsing an aromatic ring C-C bond. In di-2, the relevant OS-CC
torsion angles are 6.3(6)° and 8.0(5)9; in di-4 these angles are 15.5(7)° and 20.2(7)°. One
possible rationale for these preferences is steric: these torsion angles allow the methylene carbon
attached to each sulfur atom to achieve maximum separation from the nearby aromatic ring
(pertinent CH,S-CC torsion angles are 82.1(5)° and 78.9(6)° for dl-2 and 87.8(7)° and 86.9(7)°
for di-4). lt is also possible that these preferences result from an intramolecular attraction between
the phosphine oxide oxygen atom and one or both of the sulfur atoms. A third possibility is a five-
membered ring hydrogen bonding interaction between the sulfoxide oxygen and the nearby
aromatic ring hydrogen atom (hydrogen positions not independently refined; O--H distances ca.
2.32-2.44 A in dI-2 and dl-4).

The steric rationale is not compelling because in the crystal structure of 1, the CH,S-CC
torsion angles (42.5(2)9 and 49.0(2)°) are smaller than in di-2, implying that some other factor ]
induces the sulfoxide oxygen atoms to lie in or near the plane of the adjacent aromatic ring. The \?
non-bonded PO--S distances in dI-2 are 2.991(5) and 3.953(5) A (O--S=0 angles 162.8(2)° and )
175.8(2)0, respectively), and in di-4 the PO--S distances are 2.923(5) and 3.013(6) A (0--S=0 :
angles 171.2(3)° and 173.2(3)9, respactively). The sum of the oxygen and sulfur van der Waals ~ ——
radii has been estimated to be 3.25 A.6 Thus, there may be some non-bonded S--O attraction at ______
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work in dI-2 and di-4, aithough much shorter non-bonded S--O contacts have been observed in
other systems. 6.7 A precedent for the five-membered ring S=0--H-C hydrogen bondung interaction
proposed above may be tound in structural data on co-crystals containing 1,3-bis(m-nitrophenyl)-
urea reported by Etter and Panuto.8

In summary, our data suggest that the mobility of the eleven-membered ring of 1 is restricted,
and that the macrocycle's conformational preference controls the stereochemistry of oxidation at
the two sulfur atoms. Crystallographic data on phosphine oxide-disulfoxides di-2 and di-4 indicate
that non-covalent attractions involving the S=O and P=0 groups may exert conformation-directing
effects at this oxidation level. The preparation of other macrocycles containing muiltiple S=0 and
P=0 groups is underway in our laboratory, and the conformational and complexation properties of
these molecules will be reported in due course.
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